Eikonal reaction theory for two-neutron removal reactions

K. Minomo¹, T. Matsumoto², K. Egashira², K. Ogata¹, and M. Yahiro²

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

²Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

Nucleon removal reactions are a quite useful tool for investigating structure of valence nucleons in weakly bound nuclei. The Glauber model is often used to describe removal reactions but the model cannot treat nuclear and Coulomb breakup processes consistently. The eikonal reaction theory (ERT) [1] is a method to calculate one-neutron removal reactions in which the nuclear and Coulomb breakup are treated accurately within the continuum discretized coupled-channels method (CDCC) [2]. In this work, we extend ERT to two-neutron removal reactions [3].

We consider ⁶He scattering as a test calculation to show the validity of ERT. In ERT, ⁶He is described by the $n + n + {}^{4}$ He three-body model. Scattering of three-body projectiles can be described by the four-body model composed of three constituents of projectile and a target. The essence of ERT is separation of scattering matrix S. For ⁶He scattering, S is devided into the neutron part S_n and ⁴He part S_{4}_{He} ,

$$S = S_n S_n S_{^4\text{He}}.\tag{1}$$

 S_n and $S_{\rm ^4He}$ can be obtained by the four-body CDCC calculation.

In the actual calculation, the optical potentials for n- and ⁴He-target systems are a key input. We use the microscopic optical potentials obtained with the folding model, hence the present framework has no adjustable parameters.

Figure 1 shows the elastic breakup $(\sigma_{\rm br})$, one-neutron stripping $(\sigma_{1n \, \rm str})$, two-neutron stripping $(\sigma_{2n \, \rm str})$, two-neutron removal (σ_{-2n}) , and total reaction cross sections $(\sigma_{\rm R})$ for ⁶He scattering off ¹²C (left panel) and ²⁰⁸Pb (right panel) targets at 240 MeV/nucleon. The present framework was successful in reproducing measured one- and two-neutron removal cross sections with no free parameter. In particular, for ²⁰⁸Pb target in which the Coulomb breakup process is important, ERT yields much better agreement with the measured cross sections than the Glauber model. ERT is highly reliable for describing one- and two-neutron removal reactions.

Figure 1: Calculated and measured cross sections of ⁶He scattering from ¹²C (left panel) and ²⁰⁸Pb (right panel) at 240 MeV/nucleon. The right vertical axis stands for $\sigma_{\rm R}$, whereas the left one does for $\sigma_{\rm br}$, $\sigma_{1n\,\rm str}$, $\sigma_{2n\,\rm str}$, and σ_{-2n} . The ERT and Glauber-model results are shown by the circles and triangles, respectively. The experimental data are taken from Ref. [4].

References

- [1] M. Yahiro, K. Ogata, and K. Minomo, Prog. Theor. Phys. 126, 167 (2011).
- [2] M. Yahiro, K. Ogata, T. Matsumoto, and K. Minomo, Prog. Theor. Exp. Phys. 2012, 01A206 (2012).
- [3] K. Minomo, T. Matsumoto, K. Egashira, K. Ogata, and M. Yahiro, Phys. Rev. C 90, 027601 (2014).
- [4] T. Aumann et al., Phys. Rev. C 59, 1252 (1999).